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ABSTRACT. In this paper some infinite regular graphs generated by tilings of the plane by infinite 
hexagonal grid are considered. It is proved that these graphs have discrepancies between their metric 
dimension and partition dimension. Also, it is proved that for every 2≥n  there exist finite induced 
subgraphs of these graphs having metric dimension equal to n  as well as infinite induced subgraphs with 
metric dimension equal to three. It is natural to ask for a characterization of graphs having discrepancies 
between their metric dimension and partition dimension.  
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1  INTRODUCTION AND PRELIMINARY RESULTS 
If G  is a connected graph, the distance ),( vud  between 
two vertices )(, GVvu ∈  is the length of a shortest path 

between them. Let },....,,{= 21 kwwwW  be an ordered set 

of vertices of G  and let v  be a vertex of G . The 
representation )|( Wvr  of v  with respect to W  is the k -

tuple )),(),.....,,(),,(( 21 kwvdwvdwvd . If distinct 

vertices of G  have distinct representations with respect to 
W , then W  is called a resolving set for G  [1]. A resolving 
set of minimum cardinality is called a basis for G  and this 
cardinality is the metric dimension of G , denoted by 

)(Gdim . The concepts of resolving set and metric basis 
have previously appeared in the literature (see [1,3, 8-13]). 
For a given ordered set of vertices },....,,{= 21 kwwwW  

of a graph G , the i -th component of )|( Wvr  is 0  if and 

only if iwv = . Thus,  to show that W  is a resolving set it 

suffices to verify that )|()|( WyrWxr ≠  for each pair of 
distinct vertices WGVyx \)(, ∈ . 
A useful property in finding )(Gdim  is the following: 
Lemma: [13] Let W  be a resolving set for a connected 
graph )(G  and )(, GVvu ∈ . If ),(=),( wvdwud for all 
vertices },{\)( vuGVw∈ , then ∅≠∩Wvu },{ . 
Another kind of dimension of a connected graph, called 
partition dimension was introduced in [4, 5] as follows: For 
a subset )(GVS ⊂  and a vertex v  of a connected graph 
G , the distance ),( Svd  between v  and S  is defined as 
usually by }:),({min=),( SxxvdSvd ∈ . If 

),....,,(= 21 kSSSΠ  is an ordered k - partition of )(GV , 

the representation of v  with respect to Π  is the k -tuple 
)),(),.....,,(),,((=)|( 21 kSvdSvdSvdvr Π . If the k - 

tuples )|( Πvr  for )(GVv∈  are all distinct, then the 
partition Π  is called a resolving partition and the minimum 
cardinality of a resolving partition of )(GV  is called the 
partition dimension of G  and is denoted by )(Gpd . Let 

},....,,{= 21 kSSSΠ  be an ordered partition of )(GV . If 

ji SvSu ∈∈ ,  where kji ≤≤ ,1  and ,ji ≠  then 

)|()|( Π≠Π vrur  since 0=),( iSud  but 

0),( ≠iSvd . Thus, when determining whether a given 

partition Π  of )(GV  is a resolving partition for )(GV , 
we need only to verify if the vertices of G  belonging to the 
same class of Π  have distinct representations with respect 
to Π . When ),(),( ii SvdSud ≠  we shall say that the 

class iS  distinguishes vertices u  and v . Another useful 

property in determining )(Gpd  is the following lemma 
[5]. 
Lemma: Let Π  be a resolving partition of )(GV  and 

)(, GVvu ∈ . If ),(=),( wvdwud  for all vertices 
},{\)( vuGVw∈ , then u  and v  belong to different 

classes of Π . 
It is natural to think that the partition dimension and metric 
dimension are related; in [4]  it was shown that for any 
nontrivial connected graph G  we have 

1)()( +≤ GdimGpd . 
However, the partition dimension may be much smaller than 
the metric dimension. 
These concepts have some applications in chemistry for 
representing chemical compounds [3,8] or to problems of 
pattern recognition and image processing, some of which 
involve the use of hierarchical data structures [9] . 
Let ),( ji  and ),( ji ′′  be two points with integral 

coordinates in 2Z . It is well known that the following 
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definitions yield metrics for 2Z : 
|||=|)),(),,((4 jjiijijid ′−+′−′′  (city block 

distance) and |)||,(|max=)),(),,((8 jjiijijid ′−′−′′  
(chessboard distance). The indices 4 and 8 are appropriate 
because they represent the number of points at distance 
one(the neighbors) from a given point with respect to these 
two metrics. These two metrics on 2Z  generate two infinite 
graphs ),( 4

2 EZ  and ),( 8
2 EZ  having the same vertex set 

2Z  and the set of edges consisting of all pairs of vertices 
whose city block and chessboard distances are 1. ),( 4

2 EZ  
is a planar 4 -regular graph whose regions are unit squares 
and it is also known as the square lattice graph. ),( 8

2 EZ  is 

8 -regular and can be obtained from ),( 4
2 EZ  by drawing 

all diagonals of unit squares. In [9] it was proved that these 
two graphs have no finite metric bases and for any natural 
number 3≥n , there exist induced subgraphs of ),( 4

2 EZ  

and ),( 8
2 EZ , respectively having metric dimension equal 

to n  and partition dimension equal to three. Also, in [12] it 
was shown that 3=),( 4

2 EZpd  and 4.=),( 8
2 EZpd  

In this way, Tomescu was the first who proved that the 
partition dimension of a graph may be much smaller than the 
metric dimension. He called this phenomena for connected 
graphs when the metric dimension of a graph is infinite but 
its partition dimension is finite, the discrepancy between 
metric dimension and partition dimension. In [13], it was 
also proved that that infinite hexagonal grid and some 
infinite regular graphs generated by tiling of the plane by 
triangular lattice have also discrepancy between their metric 
dimension and partition dimension. It is natural to ask for a 
characterization of graphs having discrepancies between 
their metric dimension and partition dimension. 
In this paper, we extend this study by considering some 
infinite regular graphs generated by tiling of the plane by an 
infinite hexagonal grid. We prove that these graphs have 
discrepancies between their metric dimension and partition 
dimension. Also there exist finite induced subgraphs of these 
graphs having metric dimension equal to n  as well as 
infinite induced subgraphs with finite and constant metric 
dimension.  
2  SOME INFINITE REGULAR GRAPHS GENRATED 
BY INFINITE HEXAGONAL GRID 
In what follows we shall consider some infinite regular 
graphs generated by tilings of the plane by infinite 
hexagonal grid.  
 

 
Figure  1: The infinite graphs 7653 ,,, GGGG  and 8G  

 The graph 3G  is a planar 3 -regular infinite graph whose 

regions are regular hexagons of unit side. )( 3GV  consists 
of the vertices of these hexagons, two vertices being 
adjacent if they are the extremities of a unit side of a 
hexagon in the tiling and it is known as infinite hexagonal 
grid. The graph 5G  is a 5 -regular infinite graph which can 

be obtained from 3G  by drawing its two diagonals except 
the horizontal and vertical diagonals of regular hexagons. A 
6 -regular infinite graph denoted by 6G  can be obtained 

from 3G  by joining those vertices by an edge that are 
extremities of horizontal diagonals of regular hexagons and 
by drawing the other diagonal of the rhombuses appearing in 
the graph. This graph induces the rectangles and rhombuses 
(having both diagonals). If we draw one diagonal (having 

slope 
3

1
√

) appearing in the infinite graph 6G , we get a 7 -

regular infinite graph denoted by 7G . The graph 7G  
induces the rectangles with one diagonal and rhombuses 
having both diagonals. Similarly if we draw both diagonals 

of the rectangles (having slope 
3

1
√

 and 
3

1
√

− ), we get an 

8 -regular infinite graph denoted by 8G  (see Fig. 1). The 
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indices 3,5,6,7  and 8  are appropriate because they 
represent the number of vertices (the neighbors) at distance 
1 from a given vertex.  
3  MAIN RESULTS ON DISCREPANCIES BETWEEN 
METRIC DIMENSION AND PARTITION IMENSION 
In this section, we prove that the graphs 7653 ,,, GGGG  

and 8G  have discrepancy between their metric dimension 
and partition dimension. In the next theorem, we show that 
the graphs 7653 ,,, GGGG  and 8G  have no finite metric 

bases.  THEOREM 1.  The graphs 7653 ,,, GGGG  and 

8G  have no finite metric basis, i.e., 

.=)(=)(=)(=)(=)( 87653 ∞GdimGdimGdimGdimGdim   

Proof: Figs. 2  represent two vertices yx,  in 

7653 ,,, GGGG  and 8G  having their Euclidean distances 

equal to 31,√  and to 2√ , respectively and subgraphs 

3,5,6,7,8)=)(,( iyxGi  consisting of vertices z  such 

that ),(=),( yzdzxd . Suppose that 5G  has a finite 

metric basis S . We can find two vertices yx,  and a subset 

),(5 yxGT ⊂  consisting of all vertices ),(5 yxGz∈  

such that kyzdxzd ≤),(=),(  for k  large enough, such 
that TS ⊂ . This implies that ),(=),( zydzxd  for all 

Sz∈ , a contradiction. The proof is similar for other 
infinite graphs.  

 

  
 
Figure  2: Subgraph of vertices having equal distances to x  

and y  
  In the next theorem, we determine the exact value for 
partition dimension of 53,GG  and 6G  which shows that 
partition dimension of these graphs is finite.   
THEOREM 2. We have 

3=)(=)(=)( 653 GpdGpdGpd .   

Proof: In [3] it was shown that 2=)(Gpd  if and only if 
G  is a path and this property also holds for infinite graphs. 
It follows that 3)(3,)( 53 ≥≥ GpdGpd  and 

3)( 6 ≥Gpd . 

  
Figure  3: Resolving 3 -partitions of )(),( 53 GVGV and 

)( 6GV  

  Fig. 3  provides resolving 3 -partitions of 53,GG  and 

6G , respectively. It follows that 

3=)(=)(=)( 653 GpdGpdGpd . 

The problem of determining partition dimension of 7G  and 

8G  is much more difficult. We are only able to find some 
bounds in the next theorem but these bounds are enough to 
prove that these graphs have discrepancies between their 
metric dimension and partition dimension. 
THEOREM 3. We have 4)(3 7 ≤≤ Gpd  and 

5)(3 8 ≤≤ Gpd .   

Proof: The same argument used in Theorem 2  implies that 
3)( 7 ≥Gpd  and 3)( 8 ≥Gpd . On the other hand, Fig. 4  

provides a resolving 4 -partition of )( 7GV  and a resolving 

5 -partition of )( 8GV , which completes the proof.  

  
Figure  4: Resolving 4 -partitions of )( 10GV  and resolving 

5 -partition of )( 10GV  
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 The metric dimension of some induced subgraphs of 3G  
has been studied in [13] and it was proved that there are 
induced subgraphs of these graphs having metric dimension 
equal to n  as well as there are infinite induced subgraphs 
with metric dimension equal to three. 
Fig. 5  represents some induced subgraphs of 765 ,, GGG  

and 8G : nF  is an induced subgraph of 5G  and contains n  
hexagons with two of its diagonals except the horizontal and 
vertical diagonals. 1H  (two-way infinite ladder) and 2H  
(two-way infinite triangular ladder) are infinite induced 
subgraphs of 6G  and 7G , respectively consisting of 

triangles(rectangles) whereas 3H  contains rectangles with 

both diagonals, and is infinite induced subgraph of 8G .  
4  INFINITE REGULAR GRAPHS WITH FINITE 
METRIC DIMENSION 
A natural starting point for studying the metric dimension of 
infinite graphs is to investigate the finiteness of this 
invariant. It is not difficult to realize that infinite graphs may 
have finite or infinite metric dimension. In fact, for every 

0≥k  there exist infinite graphs with metric dimension k . 
Caceres et al. [2] proved the following result for infinite 
graphs. 
•  The metric dimension of a graph G  is 1 if, and only if, 
G  is either a finite path or the one-way infinite path. 
•  The infinite comb graph ∞B  has infinite metric 
dimension. 
•  An infinite tree has finite metric dimension if and only if 
the set of vertices of degree at least three is finite. 
They also obtained some result on cartesian product of 
infinite graphs. For detail see [2]. Tomescu proved in [12] 
that infinite regular graphs ),( 4

2 EZ  and ),( 8
2 EZ  have 

infinite metric dimension and in [13] it was also shown that 
graphs generated by tiling of the plane by regular triangles 
and hexagons have no finite metric bases. 
In the next theorem we give the example of a couple of 
infinite regular graphs having finite metric dimension which 
shows that not every infinite regular graph has infinite 
metric dimension.   
THEOREM 4. We have 3=)(=)( 21 HdimHdim  but 

.=)( 3 ∞Hdim   Proof: For 1H  (two-way infinite ladder) 

and 2H  (two-way infinite triangular ladder), the vertices 
which are at the same distance apart from B  are 
distinguished by A  and C , respectively. In the case of 3H  
(two-way infinite diagonal ladder), each rectangle inducing a 
complete graph 4K  has two pairs of vertices },{ yx  such 

that ),(=),( zydzxd  for every },{\)( 3 yxHVz∈ . By 

Lemma 1 this implies that .=)( 3 ∞Hdim   
 

  
 

Figure  5: Some induced subgraphs of 8)(5 ≤≤ iGi  
  
THEOREM 5. For every 2≥n  we have nFdim n 2=)(  

and nF  has nn!4  metric bases.  Proof: The vertices u  and 

w  of nF  have equal distances to all vertices of nF . 
Similarly vertices v  and t  have equal distances to all 
vertices of nF . It follows that at least one of vu,  and one 

of tw,  from each hexagon of nF  must belong to any 

resolving set of nF  implying that nFdim n 2)( ≥ . 
On the other hand, by choosing two vertices of degree three 
other than end vertices in each hexagon of nF ( in n4  

ways), the set of these vertices forms a metric basis of nF . 

These vertices can be ordered in !n  ways and the result 
follows. 

 
5  CONCLUSION 
 In this paper, some infinite regular graphs generated by 
tilings of the plane by infinite hexagonal grid are considered. 
These graphs have no finite metric bases but their partition 
dimension is finite and is evaluated in some cases. It is 
natural to ask for a characterization of graphs having 
discrepancies between their metric dimension and partition 
dimension. 
Also, it is proved that for every 2≥n  there exist finite 
induced subgraphs of these graphs having metric dimension 
equal to n  as well as infinite induced subgraphs with metric 
dimension equal to three. We close this section by raising 
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some questions that naturally arise from the text. 
Open Problem 1: Is it the case that every infinite regular 
graph generated by tiling of the plane by infinite hexagonal 
grid will always have the discrepancies between their metric 
dimension and partition dimension? 
Open Problem 2: Find the exact value of partition 
dimension for 7G  and 8G . 
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